Cicada Mania

Dedicated to cicadas, the most amazing insects in the world.

Cicada T-shirts

July 29, 2015

Megatibicen grossus (formerly Neotibicen auletes) in Manchester, New Jersey

Filed under: Megatibicen | Neotibicen — Tags: , , — Dan @ 8:32 pm

Tonight I went to Manchester, New Jersey to look and listen for Neotibicen auletes aka the Northern Dusk-Singing cicada. As the name suggests, these cicadas sing at dusk (basically right at sunset). They are also the largest cicadas in North America.

I heard many auletes, found some nymphal skins, and one dead adult. Unfortunately I found no live specimens to film or video. Next time.

auletes

* Note as of 2023 the name of this cicada has changed to Megatibicen grossus. You can also call it a Northern Dusk-Signing Cicada.

July 13, 2015

Neocicada hieroglyphica hieroglyphica in Riverhead, NY

Filed under: Annette DeGiovine | Elias Bonaros | Neocicada — Tags: , — Dan @ 6:29 pm

Elias Bonaros shared this photo of a Neocicada hieroglyphica that he observed emerging in Riverhead, Long Island, New York, which is the north-most point of their range, as documented by William T. Davis.

They were taken today, July 13th, 2015.

Here is the Neocicada hieroglyphica hieroglyphica exiting its nymphal skin.

Neocicada hieroglyphica hieroglyphica

Neocicada hieroglyphica hieroglyphica

Annette DeGiovine wrote an extensive blog post with many images and video of emerging Neocicada hieroglyphica. Check it out.

What I’m interested in, but don’t know much about

Filed under: Cicada Mania — Dan @ 4:02 pm

20,000 or so years ago the earth was a colder place. Glaciers covered much of North America, including many states that currently are home to Magicicada, and other species of cicadas. There were glaciers in Wisconsin as recently as 9,500 years ago. The area below the glaciers were dominated by taiga, a landscape dominated by sappy evergreens and grasses (mastodon food). Florida was three times the size it was today.

Glaciers
Map from the NOAA.

What I’m curious about is this:

  • Where were the Magicicada 20-10 thousand years ago? Did they exist in a primordial form some place in the primordial woodlands of mega-Florida?
  • How did deciduous trees (oak, maple, ask, etc) spread northward, and how did the Magicicada spread with them?
  • Did the spread of deciduous trees northward into America play a part in the unusual life cycle of Magicicada, including the long lifecycle and 4 year accelerations?
  • Were the Neotibicen and Neocicada also living in mega-Florida or perhaps Mexico, and then spread northward as temperatures rose?
  • Were Okanagana able to exist in the colder, evergreen-dominated taiga of the time of the last glaciers?

For some reason this stuff intrigues me. Thank goodness my local library has a Jstor account.

July 12, 2015

Why do Magicicada stay underground for 13 or 17 years?

Filed under: FAQs | Life Cycle | Magicicada | Periodical — Dan @ 8:01 pm

People ask: why do periodical cicadas stay underground for 17 or 13 years?

There are three parts to this puzzle that people are interested in:

  1. How cicadas count the years as they go by.
  2. Why prime numbers? 13 and 17 are prime.
  3. Why is their life cycle so long? They are one of the longest living insects.

Cicadas likely don’t count like people do (“1,2,3,4…”) and you won’t find scratch marks inside the cell (where they live underground) of a Magicicada, marking off the years as they go by. However, there is a kind of counting going on, and a good paper to read on that topic is How 17-year cicadas keep track of time by Richard Karban, Carrie A. Black, and Steven A. Weinbaum. (Ecology Letters, (2000) Q : 253-256). By altering the seasonal cycles of trees they were able to make Magicicada emerge early, proving that cicadas “count” seasonal cycles, perhaps by monitoring the flow and quality of xylem sap, and not the passage of real time.

Why prime numbers, and why is the life cycle so long? This topic fascinates people. The general consensus is that the long, prime-numbered life-cycle makes it difficult for an above-ground animal predator to evolve to specifically predate them. Read Emergence of Prime Numbers as the Result of Evolutionary Strategy by Paulo R. A. Campos, Viviane M. de Oliveira, Ronaldo Giro, and Douglas S. Galva ̃o (PhysRevLett.93.098107) for more on this topic. An argument against that theory is that a fungus, Massospora cicadina, has evolved to attack periodical cicadas regardless of their life cycle. Of course, a fungus is not an animal. Maths are easy for fungi.

There are also questions about why there are 13 and 17 year life cycles, why a 4 year acceleration of a brood might occur1 and why Magicicada straggle.

1 This is a good place to start: Genetic Evidence For Assortative Mating Between 13-Year Cicadas And Sympatric”17-Year Cicadas With 13-Year Life Cycles” Provides Support For Allochronic Speciation by Chris Simon, et al, Evolution, 54(4), 2000, pp. 1326—1336.

30 Things Cicadas Do

Filed under: Eggs | FAQs | Life Cycle — Dan @ 11:59 am

One of the most frequently asked questions we receive is: “what do cicadas do“? This question is similar to the question “what is the purpose of cicadas” — the answers to both questions help people understand why these fascinating, unusual creatures exist at all.

The simplest reduction of their life cycle is:
1) They hatch from an egg.
2) They burrow underground where they will drink from plant roots for most of their lives.
3) They leave the underground and become adults.
4) The males make sounds that attract females.
5) Males & females court & mate.
6) Females lay fertilized eggs in the branches of plants, and the cycle continues.
7) They die.

The specifics of a cicada’s life cycle varies from species to species, but here is a more detailed view of what cicadas do:

From egg to 1st instar nymph:
1) Cicada nymphs hatch from eggs.

Marlatt 1907 Egg Nest Detail

2) Nymphs feed on plant fluids which they access thanks to the egg-nest groove made by their mothers.

3) They leave the groove, and drift to the ground. Their descent to the ground doesn’t hurt them because they weigh so little.

4) Once on the ground, they dig into the soil until they find small rootlets, from which they will feed.

Once Underground:
5) Underground, they will tunnel/dig

6) and establish a cell

7) from where they’ll comfortably feed. Cicadas feed on the xylem sap of plants. With the help of bacteria they transform the water, minerals and amino acids found in tree fluids to the tissues of their own bodies.

8) They pee, in fact they seem to use excess plant fluid to moisten soil to help mold the walls of their cells.

9) Throughout their life underground they will move from root to root… as plant root systems change with the seasons, when roots die off, or perhaps to avoid predators.

10) Underground, a cicada may (depending on the species) go through four instars, molting three times (see an image of the four instars).

Preparing to emerge:
11) Cicadas will build a tunnel to the surface of the ground, in preparation for their emergence.

12) Cicadas often take that a step further an build a chimney/turret above ground. This often happens in shady areas or when the ground is muddy.

Once above ground:

13) They emerge from their tunnels

14) Cicadas run as fast as they can…

15) And find a surface perpendicular to the ground, hold tight, and begin to molt…

16) During the molting process (ecdysis), cicadas perform many acrobatic moves to separate themselves from their nymphal skin, including pulling their old trachea from their bodies.

17) Once outside their nymphal skin, they will inflate their wings

18) … and expand various parts of their bodies, like their heads.

19) They will change color.

20) Once their bodies are hard enough (sclerotization counts as a thing they do)…

21) They will either seek shelter, perhaps by crawling up higher along a tree trunk…

22) or if your are a Magicicada, you might stick around in the hopes that a predator will eat you.

Mating and Reproduction:

23a) If you are a Male cicada, you are going to sing… unless you belong to a species that cannot sing, in which case, you’ll move your wings in a way that will produce a sounds.
There are many types of songs: a) distress calls, b) calls to establish territory, c) calls to attract females, d) including choruses of many cicadas and e) courting calls

23b) Female cicadas, and some male cicadas, move their wings to make sounds, also in an effort to attract and engage a mate.

24) Most cicadas (aside from Magicicada during the early days of their adult lives) will try to avoid being eaten by predators.

25) They’ll fly, of course.

26) Cicadas, like Magicicada, will establish chorusing centers, which are places where the male cicadas sing together and females come to meet them.

27) Male and female cicadas will court

28) and mate

29) the female cicada will lay her eggs in grooves (ovipositing) she etches into a suitable plant stem, and we’re back to step 1.

30) The last thing cicadas do, of course, is die, and return the nutrients found in their bodies to the soil, where they will be broken down and absorbed by the plants they fed upon.

Some things cicada do not do:

Here are some things cicadas do not do:

1) They don’t seek shelter during the fall months (i.e. they don’t try to live inside your house), unlike Ladybugs or Stinkbugs.
2) They don’t sting or otherwise pass venom onto people.
3) They don’t chew plant leaves, like caterpillars or grasshoppers.
4) They don’t dump garbage in the ocean.

July 10, 2015

Major Changes to the Tibicen genera

Sometimes you wake up and the whole world is different. See this cicada:

Teneral Neotibicen tibicen
photo by me.

… when I went to sleep she was a Tibicen tibicen tibicen, but now I know she is a Neotibicen tibicen tibicen. 10 years ago, she was a Tibicen chloromera. 130 years ago, she was Cicada tibicen. Cicada names change as researchers discover their differences.

Two new papers have split the Tibicen (or Lyristes) genera into many genera: Tibicen (European Tibicen), Auritibicen (Tibicen of Asia/Japan), Neotibicen (mostly eastern North American Tibicen), and Hadoa (Tibicen of the western United States).

The first paper is Description of a new genus, Auritibicen gen. nov., of Cryptotympanini (Hemiptera: Cicadidae) with redescriptions of Auritibicen pekinensis (Haupt, 1924) comb. nov. and Auritibicen slocumi (Chen, 1943) comb. nov. from China and a key to the species of Auritibicen by Young June Lee, 2015, Zootaxa 3980 (2): 241—254. This paper establishes the new genera Auritibicen, and the members of the Tibicen/Lyristes genera fall into that genera. Here is a link. So, Tibicen flammatus aka Lyristes flammatus of Japan, for example, becomes Auritibicen flammatus.

A. flammatus
Auritibicen flammatus photo by Osamu Hikino.

The second paper is Molecular phylogenetics, diversification, and systematics of Tibicen Latreille 1825 and allied cicadas of the tribe Cryptotympanini, with three new genera and emphasis on species from the USA and Canada (Hemiptera: Auchenorrhyncha: Cicadidae) by Kathy B. R. Hill, David C. Marshall, Maxwell S. Moulds & Chris Simon. 2015, Zootaxa 3985 (2): 219—251. This paper establishes the Neotibicen (Hill and Moulds), and Hadoa (Moulds) genera. This paper also sought to establish the Subsolanus genera for the Asian Tibicen/Lyristes species but the previously mentioned paper by Young June Lee has precedence because it was published first. Link to paper.

To recap, European Tibicen/Lyristes are Tibicen

Lyristes plebejus photo by Iván Jesús Torresano García
Tibicen plebejus photo by Iván Jesus Torresano García.

… Asian Tibicen/Lyristes are now Auritibicen. Mostly-eastern North American Tibicen are now Neotibicen, and Western North American Tibicen are now Hadoa. Note that, the catagorization is not due to location, but to genetic and physiological evaluation (read the papers).

Needless to say this website and others have a lot of name changing to do, but in the mean time, here’s where the North American species fall out:

Neotibicen
Tibicen auletes Neotibicen auletes
Tibicen auriferus Neotibicen auriferus
Tibicen canicularis Neotibicen canicularis
Tibicen cultriformis Neotibicen cultriformis
Tibicen davisi davisi Neotibicen davisi davisi
Tibicen davisi harnedi Neotibicen davisi harnedi
Tibicen dealbatus Neotibicen dealbatus
Tibicen dorsatus Neotibicen dorsatus
Tibicen figuratus Neotibicen figuratus
Tibicen latifasciatus Neotibicen latifasciatus
Tibicen linnei Neotibicen linnei
Tibicen lyricen engelhardti Neotibicen lyricen engelhardti
Tibicen lyricen lyricen Neotibicen lyricen lyricen
Tibicen lyricen virescens Neotibicen lyricen virescens
Tibicen pronotalis pronotalis Neotibicen pronotalis pronotalis
Tibicen pronotalis walkeri Neotibicen pronotalis walkeri
Tibicen pruinosus fulvus Neotibicen pruinosus fulvus
Tibicen pruinosus pruinosus Neotibicen pruinosus pruinosus
Tibicen resh Neotibicen resh
Tibicen resonans Neotibicen resonans
Tibicen robinsonianus Neotibicen robinsonianus
Tibicen similaris Neotibicen similaris
Tibicen superbus Neotibicen superbus
Tibicen tibicen australis Neotibicen tibicen australis
Tibicen tibicen tibicen Neotibicen tibicen tibicen
Tibicen tremulus Neotibicen tremulus
Tibicen winnemanna Neotibicen winnemanna
Hadoa
Tibicen bifidus Hadoa bifida
Tibicen chiricahua Hadoa chiricahua
Tibicen duryi Hadoa duryi
Tibicen inauditus Hadoa inaudita
Tibicen longioperculus Hadoa longiopercula
Tibicen neomexicensis Hadoa neomexicensis
Tibicen parallelus Hadoa parallela
Tibicen simplex Hadoa simplex
Tibicen texanus Hadoa texana
Tibicen townsendii Hadoa townsendii

July 6, 2015

Where do Cicadas Live?

Filed under: FAQs — Dan @ 5:32 pm

Once they become adults, cicadas live on and around plants similar to their host plants, often the very same tree where they were born. Depending on the species of cicada, this could be a tree, or perhaps a grass (sugar cane, which some cicadas use as hosts, are giant grasses).

When they are nymphs, which they are during the first stages or instars of their life, they live underground amongst the root systems of the plants they derive nourishment from. While they are there, they dig tunnels and build cells (their living quarters) where they can feed from the fluid of rootlets of plants in comfort.

July 5, 2015

What are Broods?

Filed under: C.L. Marlatt | FAQs | Magicicada | Periodical — Dan @ 6:29 pm

It is important to note that when we talk about cicada broods, we are talking about the 17 & 13-year periodical Magicicada cicadas. We are not talking about Tibicen or other species.

All Broods

There are 12 groups of Magicicadas with 17-year life cycles and 3 groups of Magicicadas with 13-year life cycles. Each of these groups emerge in a specific series of years, rarely overlapping (17 & 13-year groups co-emerge every 221 years, for example). Each of these groups emerge in the same geographic area their parents emerged. These groups, each assigned a specific Roman numeral, are called broods.

Gene Kritsky’s book, Periodical Cicadas: The Plague and the Puzzle, documents the history of the recognition and naming of the broods. The first person to document that different groups of periodical cicadas emerged in different years was Nathaniel Potter in 1839. Benjamin D. Walsh and Charles V. Riley devised the system for numbering the different broods in 1868, and then C. L. Marlatt sorted the 17 year broods out from the 13-year broods, giving us the system we have today.

Visit our Broods page which features a grid of the Brood names, their lifespan, when & where they’ll emerge next and links to maps.


What Might Cause Cicadas to go Extinct?

Filed under: Extinct Cicadas | FAQs — Dan @ 9:48 am

You might ask, “why were there once cicadas in my area, but now there are none?” There are a number of reasons why cicadas might die off in a particular area, or go totally extinct.

1) Destruction of host trees by a blight or destructive insect infestation. Tibicen bermudiana went extinct in the 1950s in Bermuda because of a cedar tree blight. Emerald Ash Borer insects are currently devastating Ash trees in North America. Ash trees are a favorite tree of Magicicada cassini, in particular.

2) Destruction of host trees by humans. Consider that every time a forest is removed to make room for another neighborhood, factory, strip mall, or highway, the cicadas that inhabited those areas died. Each time the human race expands, the cicadas must decline. The paper The Distribution of Brood Ten of the Periodical Cicadas in New Jersey in 1970 by John B. Schmitt documents the reduction of cicada populations in New Jersey, the nation’s most populous state. Also, the entire Brood XI went extinct in Connecticut as of 1954.

3) Extreme weather such as tornadoes, hurricanes, and flooding can destroy cicada habitat. While there are cases where cicadas were able to survive some pretty horrific weather, if trees are destroyed, or grasses that are hosts to young cicada nymphs are destroyed, or if floodwater sits too long, the cicadas are doomed.

4) Pesticides. It should be obvious that pesticides will kill cicadas.

Can pets or other animals sense cicadas below ground?

Filed under: FAQs — Dan @ 8:51 am

Can pets, including dogs and cats, or other animals sense cicadas below ground? Yes they can. Animals have a better sense of hearing than humans, and they are able to sense the subtle sounds of cicadas tunneling underground.

You might discover animals, including your pet dog, digging up your lawn in advance of a periodical cicada emergence. That is because they can sense the cicadas preparing for the day they will emerge.

« Newer PostsMore »

Cicada T-shirts


We use cookies on CicadaMania.com to provide you with an excellent user experience.
We will assume that you are agreeing to our Privacy Policy if you continue accessing our site.