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Emergence of Prime Numbers as the Result of Evolutionary Strategy
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We investigate by means of a simple theoretical model the emergence of prime numbers as life cycles,
as those seen for some species of cicadas. The cicadas, more precisely the Magicicadas, spend most of
their lives below the ground and then emerge and die in a short period of time. The Magicicadas display
an uncommon behavior: their emergence is synchronized and these periods are usually prime numbers.
In the current work, we develop a spatially extended model at which preys and predators coexist and can
change their evolutionary dynamics through the occurrence of mutations. We verified that prime
numbers as life cycles emerge as a result of the evolution of the population. Our results seem to be a
first step in order to prove that the development of such strategy is selectively advantageous, especially
for those organisms that are highly vulnerable to attacks of predators.
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It is well established that species evolve by increasing
their adaptation to the environment where they live. In
this sense,Wright created the metaphor comparing uphill
climbing to the Darwinian evolution [1]. In order to
become selectively stronger, species improve their fitness
either through the occurrence of mutations at the geno-
type level which confers a selective advantage or by
developing new strategies of competition with other
species.

In this Letter we investigate, within a theoretical
framework, the occurrence of periodical behavior for
the life cycles in nature. Especially, we focus our analysis
on finding mechanisms that can generate life cycles
which are prime numbers such as those known for the
cicadas. The cicadas have attracted the attention of the
scientific community since a long time ago dating from
the end of the 19th century [2]. This great interest owes to
the uncommon behavior displayed by those insects which
is not found in any other species in nature. Despite the
long period of investigation, the dynamics of the peri-
odical cicadas is still poorly understood. The cicadas,
more specifically the genus Magicicadas, have 13-year
or 17-year life cycles which are the longest life cycles
known for any insect. The Magicicadas spend most of
their lives underground before they emerge and assume
their adult form, reproducing and dying within a few
weeks. Interestingly, all the cicadas in a given location
emerge at the same time, in an impressive synchronism
[3–6]. In different regions, the broods of cicadas can be
out of synchrony [6,7]. The most interesting feature of the
life cycle of the Magicicadas is that they appear in prime
numbers, and so the cicadas have been pointed out as a
biological generator of prime numbers [8,9]. Does the
long life cycle and the fact that they appear in prime
numbers have evolutionary implications? It has been pro-
posed [3] that this could be the result of an evolutionary
strategy to avoid parasites. It would be very difficult to the
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parasites to match the life cycle if it appears in prime
numbers. For instance, if the cicadas have a life cycle of
17 years and the parasites of a couple of years they would
meet only one time out of hundreds of years. This would
lead to the extinction of the parasites if they depend on the
cicadas to reproduce. In fact no specific periodic predator
to cicadas has been found to date.

Another relevant feature about the Magicicadas is their
abundance when compared to other kind of cicadas
[10,11]. This abundance enables them to satiate predators
and so to avoid extinction since the Magicicadas are
extremely vulnerable to their predators, especially birds
[2,3,12]. As pointed out by Lloyd and Dybas [3], the
Magicicadas are really a unique phenomenon in biology.

Few models have been reported addressing this unusual
magicicada behavior, but a coherent theory to describe the
evolutionary mechanism that guided the emergence of
this synchronism and long life cycles is still missing.
As far as we know the most relevant mathematical de-
scription of the behavior of cicadas was developed by
Hoppensteadt et al. [11]. They present a mathematical
formulation for the cicadas which invokes the predator-
prey relation and also considers the limiting capacity of
the environment. As a result, they showed that it is
possible to find a synchronized and long life cycle solu-
tion for the cicadas if the system satisfies a set of con-
ditions based on the parameters of the model.

In this Letter, we wish to investigate the appearance
and advantages of producing evolutionary strategies that
yield life cycles which are given by prime numbers. For
that purpose, we introduce a spatial model where the
agents can change their strategies by mutations which
alter the length of their life cycles. In our formulation,
we use the cellular automaton approach to describe the
spatial-temporal evolution of the population [13]. A cel-
lular automaton is a regular spatial lattice of cells; each of
these cells can assume any one of a finite number of states.
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FIG. 1. Scheme of the dynamical rules of the cellular au-
tomaton. In (a) we show the Moore neighborhood of a given
cell. In (b) we show the allowed transitions among the three
states which are depicted by the directed arrows.
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The state of each cell is updated simultaneously and the
state of the entire lattice advances in discrete time steps.
The state of each cell s�t� 1� at time t� 1 is determined
by the state of its neighboring cells at the previous time t
according to a local rule.

Our approach resembles the predator-prey model
[14,15] and we only make use of local dynamics rules
to evolve the population. Spatially extended models have
been largely employed to study ecological models [16],
and provide a good way to explain deviations from the
Lotka-Voterra dynamics. Besides, the emergent patterns
of evolution in several systems can contribute new in-
sights that are not captured by the quantitative analysis
which deals with differential equations and assumes ho-
mogeneous environments. As an example, we cite the
spatial structure of evolution in prebiotic scenarios [17],
where the emergent structural pattern shows to be a
relevant mechanism to ensure the maintenance of evolu-
tionary information and the outcome against parasites
which invades the system. This formulation has the bene-
fit that we do not have to work with a large set of
parameters.

Although a simple spatially extended model has been
proposed recently to describe the cicadas’ behavior [9],
the formulation considers that the predators also exhibit a
periodical life cycle and have similar dynamics as those
of the preys. In this manner, the selection of life cycles
concerns the optimal way to make the emergence of preys
not coincide with the emergence of predators. However,
there is no evidence for the existence of such kinds of
parasitoids in nature. It looks more realistic to assume the
existence of a predator, for instance, birds, which are
constantly available to feed on the cicadas. Thus, our
formulation is completely general and addresses more
fundamental questions rather than the production of life
cycles which does not match with the life cycles of some
sort of parasitoids.

Our model is defined as follows. We consider a two-
dimensional lattice of linear size L and N � L� L sites
with periodic boundary conditions. Each lattice site si
can take one of the three possible states: si � 0, 1, and 2.
The state si � 0 denotes that the site is empty, the state
si � 1 corresponds to a cell which is occupied by a prey,
and the state si � 2 means that a predator exists in that
site. To each prey, we ascribe a quantity Tinc�i� which
defines the period that it remains below the ground before
emerging, i.e., the sequence of events from the egg to the
reproducing adult. Initially its values are randomly as-
signed in a predefined range. As the system evolves in
time these values can change induced by mutations. In the
same way, we ascribe to each predator a quantity Tstarv

which defines the maximum time that it can remain alive
without food supply. After that period of starvation the
predator dies. We consider the Moore neighborhood, i.e.,
each cell interacts with its eight nearest neighbor cells
098107-2
(see Fig. 1). The population evolves according to the
following dynamical rules:

A cell in state 0.—It can change to state 1 if there are at
least kprey emerging neighbors cells in state 1. In this case,
we randomly select a prey among those in the neighbor-
hood to produce an offspring and to occupy the cell. The
offspring inherits the same period of incubation Tinc�i� of
its parent when mutations do not take place. If the off-
spring is hit by a mutation, which occurs with probability
Uinc, the quantity Tinc�i� equally decreases or increases by
one unit. Further, it will remain in state 0 if there are
fewer than kprey neighbors in state 1.

A cell in state 1.—During emergence, the cell can
change to state two if there are at least kpredator predators
in its Moore neighborhood. In this situation, we randomly
choose a predator among those in its neighborhood to
produce an offspring and to occupy the cell. The offspring
inherits the same period of incubation Tstarv�i� of its
parent when mutations do not take place. If the offspring
is hit by a mutation, which occurs with probability Ustarv,
the quantity Tstarv�i� equally decreases or increases by one
unit. Also, during emergence, if there are at least one
predator and fewer than kprey predators, the prey is eaten
and the cell will be empty in the next generation, i.e., it
will move to state 0. In all other situations, the cell will
keep in state 1.

A cell in state 2.—It can change to state 0 if for a time
interval Tstarv�i�, the predator have not eaten any prey.
Otherwise, it will remain in state 2. The mutation mecha-
nism permits that the life cycles of the preys change by
one unit at each occurrence and the predators change their
period of resistance to the lack of food. In this way, the
population generates a greater diversity of species, which
enables the species to search for better evolutionary strat-
egies. In this direction, previous investigations have dem-
onstrated the occurrence of increasing and/or decreasing
the life cycles in Magicicada records [6,7].

In Fig. 2 we show the results for the distribution of the
dominant value of life cycles of preys in the population
098107-2
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FIG. 3. Distribution of the dominant value of life cycles of
(a) preys and (b) predators after the population has evolved for
20 000 generations. The data were taken over 1000 independent
simulations. The parameter values are L � 100, kprey � 4,
kpredator � 4, Uinc � 10�5, and Ustarv � 10�5. The initial con-
centrations of empty sites x0, preys xprey, and predators xpredator
is 0.5, 0.4, and 0.1, respectively. In all simulations we randomly
assigned the initial values for Tinc�i� and Tstarv�i�.
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FIG. 2. Distribution of the dominant value of life cycles of
preys after the population has evolved for 20 000 generations.
The data were taken over 1000 independent simulations. The
parameter values are L � 100, kprey � 4, kpredator � 4, Uinc �

10�5, and Ustarv � 10�5. The initial concentrations of empty
sites x0, preys xprey, and predators xpredator were 0.5, 0.45, and
0.05, respectively. In all simulations we randomly assigned the
initial values for Tinc�i� and Tstarv�i�.
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after the steady regime is attained. By dominant we mean
the most frequent value of Tinc�i� in the population of
preys. Although there is a dispersion of life cycles of
preys in the population, which is higher for higher values
of probability Uinc, the distribution of life cyles of preys
is really peaked at some dominant prime-number value.
We estimated the distribution from 1000 distinct runs. In
these simulations we considered a two-dimensional lat-
tice of linear size L � 100. From the figure, we clearly
can see that the prime life cycles for the preys dominates
the distribution. We also notice that life cycles of small
length are more likely to occur than long life cycles. On
the other hand, the histogram for the life cycles of pred-
ators does not display any particular pattern and we
corroborated that the distribution is rather uniform
(data not shown). This is a strong evidence of evolutionary
advantages for the prime life cycles. If this is true we can
expect that if one increases the evolutionary pressure,
increasing the number of predators, the prime-number
strategy would be more evidenced and longer cycles
should appear.

In Fig. 3(a) we show the results for the distribution of
life cycles of preys, now with the initial fraction of
predators on the lattice higher than in the previous simu-
lations. As we expected the life cycles of preys are
predominantly prime numbers as before, and longer life
cycles have a higher chance of occurring than in the
previous cases shown in Fig. 2. In Fig. 3(b) we show the
equivalent results for the predators. As we can see from
the figure prey and predators present explicitly clear
differentiated strategies as they coevolve. In contrast
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with the preys no specific pattern associated with prime
numbers was observed for the predators.

From our simulations, we found out that a higher
concentration of predators will usually come out with a
higher concentration of predators in the long term evolu-
tion if the system maintains the coexistence of both
predators and preys. Thus, the preys are effectively sub-
jected to a stronger competition with their predators. In
this manner, our results show that the preys tend to
increase their life cycles in such ways that allow them
to avoid extinction, since the preys are extremely vulner-
able to the presence of predators.We have also ascertained
that the extinction of preys with the subsequent extinction
of predators happens when the population of predators
attains high concentration values, and so the predators
feed on the preys as much as they can.

From the evolution of spatial patterns in our simula-
tions we detected some kind of subpopulation segrega-
tions. This is in agreement with experimental obser-
vations [6,7]. For each subpopulation we do not neces-
sarily have an unique value of life cycle, but we observed
that some fluctuations centered around a dominant value.
The same phenomenon also occurs for the distribution of
life cycles for the whole population.
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FIG. 4. Temporal evolution of the dominant value of life
cycles of preys in the population, Tdom, and the concentration of
preys. The parameters are L � 100, kinc � kpred � 4, Uinc �

10�5, and Ustarv � 10�5, and initial concentrations xempty �

0:3, xprey � 0:595, and xpredator � 0:105. The numbers between
parenthesis in part (a) are the corresponding values of Tdom. In
the insets we show the results for another run with 700 000
generations. As we can see the results are qualitatively identical
and demonstrate that they are not number generation dependent
after the steady state is attained.
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In Fig. 4 we depict a typical scenario for the temporal
evolution of the concentration of preys in a given popu-
lation. We observe that the stationary state for the domi-
nant life cycle of preys is attained in a few generations. In
all our simulations, the time needed to reach the sta-
tionary value for the life cycle of preys is not greater
than 5000 generations. From the figure, we can see that
while the predominant life cycle of preys is not a prime
number, the density of preys decreases as the population
evolves in time. The selection of a prime number for the
predominant life cycle prevents a further decreasing of
the density of preys in the population. This is a clear
evidence that the selection of prime numbers of life
cycles corresponds to the optimal strategy for the preys
in order to prevent extinction and to make the density
grow. We have also observed that preys try to extend their
life cycles as the density of predators increases but an
indefinite growth of predator density leads to the collapse
of the population with the resulting extinction of both
species. One interesting question is why Tstarv going to
infinity is not a good strategy for predators. In principle
we could expect that this could make them very robust to
all prey strategies. However, if the predator population
increases beyond a certain limit the prey population
would be drastically affected and could be extinct. This
would also lead the predators to extinction by starvation.
Increasing Tstarv beyond a certain limit is equivalent to
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increasing predation pressure mentioned above with the
resulting effect of extinction of both species.

In summary we have demonstrated, based on a spa-
tially extended cellular automaton model, that the ap-
pearance of the life cycle in prime numbers can be
explained as a result of a winning evolutionary strategy
of prey-predator competition. The prime life cycle domi-
nates the population distribution and stabilizes the prey
populations. Increasing predator competition favors lon-
ger prime cycles, but after a certain limit of predator
populations both species become extinct, which takes
place when we consider small Kpredator values and/or
high initial concentration of predators. Outside these
limits our main conclusions are not set parameter depen-
dent and the methodology is very robust. This is the first
neutral and completely general model to demonstrate that
the appearance of prime numbers in nature can be the
result of a winning evolutionary strategy of prey-predator
games.
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